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We develop a three-dimensional �3D� lattice Boltzmann model that recovers in the continuous limit the
two-fluids theory for plasmas, and consequently includes the generalized Ohm’s law. The model reproduces the
magnetic reconnection process just by giving the right initial equilibrium conditions in the magnetotail, without
any assumption on the resistivity in the diffusive region. In this model, the plasma is handled similar to two
fluids with an interaction term, each one with distribution functions associated to a cubic lattice with 19
velocities �D3Q19�. The electromagnetic fields are considered as a third fluid with an external force on a cubic
lattice with 13 velocities �D3Q13�. The model can simulate either viscous fluids in the incompressible limit or
nonviscous compressible fluids, and successfully reproduces both the Hartmann flow and the magnetic recon-
nection in the magnetotail. The reconnection rate in the magnetotail obtained with this model lies between
R=0.062 and R=0.073, in good agreement with the observations.
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I. INTRODUCTION

The magnetic reconnection is one of the most interesting
phenomenon of plasma physics. This process quickly trans-
forms the magnetic energy into termic and kinetic energies of
the plasma. It is mostly observed inside of astrophysical
plasmas, such as solar flares �where it contributes to the
plasma heating�, and in the terrestrial magnetosphere, where
it support the income flux of plasma and electromagnetic
energy.

The magnetic reconnection requires the existence of a dif-
fusive region, where dissipative electric fields change the
magnetic field topology. The first models were independently
formulated by Sweet �1� in 1958 and Parker �2� in 1957.
They suggested that the magnetic reconnection is a steady-
state resistive process that occurs in the vicinity of a neutral
line. This model reduces the phenomenon to a boundary con-
dition problem and can explain the magnetic field reconnec-
tion. However, it has some problems when compared with
experimental observations �i.e., a very slow reconnection
rate�, and it leaves unexplained the origin of the high-
resistive region. In 1964, Petschek �3� proposed the first
model for fast reconnection rates. He included a much
smaller diffusion region than the Sweet-Parker model, but he
suggested that the rest of the boundary layer region should
consist of slow shock waves that accelerate the plasma up to
the Alfven velocity. Nevertheless, the origin of the diffusive
region remains unexplained.

At present, the nature of this phenomenon has been stud-
ied by using kinetic theory and considering collisionless
plasmas, since this is a common property of astrophysical
plasmas. One of the developments of the kinetic theory is the
generalized Ohm’s law, where some extra terms explain the
existence of a dissipative electric field. The introduction of
these extra terms in resistive magnetohydrodynamics is

called MHD Hall �4�. A useful approximation of the kinetic
theory consists of modeling the plasma similar to two fluids
�one electronic and one ionic�, which have independent mo-
mentum, mass conservation, and state equations, plus an in-
teraction term in the momentum equation �4�. This treatment,
in the one-fluid limit, introduces in a natural way the extra
terms of the generalized Ohm’s law. However, the equations
involved by this treatment are complex and it is difficult to
find an analytic solution for any problem.

For this reason, most plasma processes are studied by
numerical methods. One of the numerical methods for simu-
lating fluids is lattice Boltzmann �LB� �5�, which was devel-
oped from lattice-gas automata. Lattice Boltzmann simula-
tions are performed on regular grids of many cells and a
small number of velocity vectors per cell, each one associ-
ated to a density distribution function, which evolve and
spread together to the neighbor cells according to the colli-
sional Boltzmann equation. The first LB model for studying
plasmas reproduces the resistive magnetohydrodynamic
equations and was developed by Chen and co-workers �6,7�
as an extension of the lattice-gas model developed by Chen
and Matthaeus �8� and Chen, Matthaeus, and Klein �9�. This
LB model uses 37 velocity vectors per cell on a square lattice
and is developed for two dimensions. Thereafter, Martinez,
Chen, and Matthaeus �10� decreased the number of velocity
vectors from 37 to 13, which made easier a future three-
dimensional �3D� extension. Some of the first LB models for
magnetohydrodynamics in 3D was developed by Osborn �11�
and Breyiannis and Valougeorgi �12�. They used 19 vectors
on a cubic lattice for the fluid, plus 7 vectors for the mag-
netic field, which makes a total number of 26 vectors per
cell. By following a different path, Fogaccia, Benzi and Ro-
manelli �13� introduced a 3D LB model for simulating tur-
bulent plasmas in the electrostatic limit. All these models
reproduce the resistive magnetohydrodynamic equations for
a single fluid.

In this paper, we introduce a 3D lattice Boltzmann model
that recovers the plasma equations in the two-fluids theory.
In this way, the model is able to reproduce magnetic recon-
nection, without the a priori introduction of a resistive re-
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gion. Moreover, it is able to reproduce the fluid state equa-
tion with a general polytropic coefficient. The model uses 39
vectors per cell and 63 probability density functions �19 for
each fluid, 25 for the electrical and magnetic fields�. In Sec.
II we describe the model with the evolution rules and the
equilibrium expressions involved for the 63 density func-
tions, plus the way to compute the electric, magnetic, and
velocity fields. The Chapman-Enskog expansion showing
how these rules recover the two-fluids magnetohydrody-
namic equations is developed in the Appendix. In order to
validate the model, we simulate the 2D Hartmann’s flow in
Sec. III, and, finally, the magnetic reconnection for a magne-
totail equilibrium configuration in Sec. IV. The main results
and conclusions are summarized in Sec. V.

II. 3D LATTICE BOLTZMANN MODEL
FOR A TWO-FLUIDS PLASMA

In a simple lattice Boltzmann model �5�, the
D-dimensional space is divided into a regular grid of cells.
Each cell has Q vectors v� i that links itself with its neighbors,
and each vector is associated to a distribution function f i.
The distribution function evolves according to the Boltz-
mann equation,

f i�x� + v� i,t + 1� − f i�x�,t� = �i�x�,t� , �1�

where �i�x� , t� is a collision term, which is usually taken as a
time relaxation to some equilibrium density, f i

eq. This is
known as the Bhatnagar-Gross-Krook �BGK� operator �14�,

�i�x�,t� = −
1

�
�f i�x�,t� − f i

eq�x�,t�� , �2�

where � is the relaxation time and f i
eq�x� , t� is the equilibrium

function. The equilibrium function is chosen in such a way
that �in the continuum limit� the model simulates the actual
physics of the system.

For our 3D model, we use a cubic regular grid, with lat-
tice constant �x=�2c�t and c is the light speed �c�3
�108 m /s�. In other words, c=1 /�2 in normalized lattice
units �time unit =�t, spatial unit =�x�. There are 19 velocity
vectors for the electronic and ionic fluids �Fig. 1�, 13 differ-
ent vectors for the electric field �Fig. 2�, and 7 different vec-
tors for the magnetic field �Fig. 3�. The velocity vectors are
denoted by v� i

p, where i=1,2 ,3 ,4 ,5 ,6 indicates the direction
and p=0,1 ,2 indicates the plane of location �Fig. 1�. Twelve
of them �i=1,2 ,3 ,4� have magnitude �2, in lattice units, and
lie on the diagonals of the planes. Their components are

v� i
0 = �2�cos��2i − 1��/4�,sin��2i − 1��/4�,0� , �3a�

v� i
1 = �2�cos��2i − 1��/4�,0,sin��2i − 1��/4�� , �3b�

v� i
2 = �2�0,cos��2i − 1��/4�,sin��2i − 1��/4�� . �3c�

Six velocity vectors �i=5,6� have magnitude 1 and point to
the centers of the cube faces in Fig. 1. Their components are

v� i
0 = „�− 1�i,0,0… , �4a�

v� i
1 = „0,�− 1�i,0… , �4b�

v� i
2 = „0,0,�− 1�i

… . �4c�

This makes 18 vectors. The missing one is the rest vector v�0,
with components �0,0 ,0�.

Associated to each velocity vector v� i
p of magnitude

�2 �i=1,2 ,3 ,4, Eq. �3�� are two electric vectors e�ij
p and two

magnetic vectors b� ij
p �j=0,1�, which are used to compute the

electromagnetic fields �Fig. 4�. The electric vectors are per-
pendicular to v� i

p and lie on the same plane p. The magnetic
vectors are perpendicular to v� i

p, too, but they are also perpen-
dicular to the plane p. In terms of the velocity vectors �3�,
they are

e�i0
p =

1

2
v� ��i+2� mod 4�+1

p , e�i1
p =

1

2
v� �i mod 4�+1

p , �5�

with the rest vector e�0= �0,0 ,0�, and

FIG. 1. The distribution functions associated to a cubic lattice
with 19 velocities �D3Q19� modeling the electronic and ionic fluids.
The arrows represent the velocity vectors v� i

p and p indicates the
plane of location.

FIG. 2. Cubic lattice D3Q13 for modeling the electric field. The
arrows represent the electric vectors e�ij

p .
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b� ij
p = v� i

p � e�ij
p , �6�

with the rest vector b�0= �0,0 ,0�. With these definitions, there
are 25 electric field vectors, but only 13 of them are differ-
ent. Similarly, there are 25 magnetic field vectors, but only 7
are different.

The velocity and density fields for both electrons and ions
plus the electromagnetic fields are computed from distribu-
tion functions that propagate from cell to cell with the veloc-
ity vectors v� i

p. For each fluid �electrons or ions� there is a
distribution function associated with each velocity vector,
that is 19+19=38 functions for the fluids. They are denoted
by f i

p�s� and f0
�s�, propagating with the velocity vectors v� i

p and
v�0, respectively. Hereby, the index s distinguishes between
electronic �s=0� and ionic �s=1� fluids. For the electromag-
netic fields there are two distribution functions associated
with each velocity vector of magnitude �2, denoted by Gij

p

�j=0,1�, plus a single function associated with the rest vec-
tor v�0, denoted by G0, that is 2�12+1=25 distribution func-
tions for the electromagnetic fields. This gives a total number
of 63 distribution functions per cell. The macroscopic vari-
ables are computed from them as follows:

�s = f0
s + 	

i=1

6

	
p=0

2

f i
p�s�, �7a�

�sVs
� = 	

i=1

6

	
p=0

2

f i
p�s�v� i

p, �7b�

E� = 	
i=1

4

	
p=0

2

	
j=0

1

Gij
pe�ij

p , �7c�

B� = 	
i=1

4

	
p=0

2

	
j=0

1

Gij
pb� ij

p , �7d�

J� = 	
s=0

1
qs

ms
�sV� s, �7e�

�c = 	
s=0

1
qs

ms
, �7f�

where �s is the density of each fluid, V� s is a subsidiary field
that represent the velocity of each fluid before including ex-
ternal forcements �i.e., before the collision �15��, and ms and
qs are its particle mass and charge �here, s=0 represents

electrons and s=1 represents ions, as before�. In addition, E�

and J� are subsidiary fields that represent the electric field and

the total current density before external forcements, B� is the
magnetic field, and �c is the total charge density.

For the evolution of these distribution functions we follow
the proposal of Guo et al. �15� which includes external force-
ments in the lattice Boltzmann equations as follows:

f i
p�s��x� + v� i

p,t + 1� − f i
p�s��x�,t� = �i

p�s��x�,t� + Ti
�s�, �8�

Gij
p �x� + v� i

p,t + 1� − Gij
p �x�,t� = �ij

p�2��x�,t� + Ti
�2�, �9�

f0
�s��x�,t + 1� − f0

�s��x�,t� = �0
�s��x�,t� + T0

�s�, �10�

G0�x�,t + 1� − G0�x�,t� = �0
�2��x�,t� + T0

�2�, �11�

where Ti
�K� and T0

�K� are forcement coefficients �K=0,1 ,2�,
defined by �15�

Ti
�s� = 
1 −

1

2�s
�wi�3�v� i

p − V� s�� · F� �s� + 9�v� i
p · V� s���v� i

p · F� s�� ,

�12a�

T0
�s� = 
1 −

1

2�s
�w0�− 3�V� s� · F� �s��� , �12b�

Ti
�2� = 0, �12c�

T0
�2� = 0. �12d�

The weights wi are w0= 1
3 , w1,2,3,4= 1

36, w5,6= 1
18, and �K are

relaxation times. The force vectors F� �s� in Eq. �12� are

FIG. 3. Cubic lattice D3Q7 for simulating the magnetic field,

the arrows indicate the magnetic vectors b� ij
p .

FIG. 4. Index relationship between the velocity vectors and the
electric and magnetic vectors.
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F� �s� =
qs

ms
�s�E�� + V� s � B� � − ��s�V� s − V� �s+1� mod 2� + F� 0

�s�,

�13�

where

E�� = E� −
1

4
	0J�� , �14�

is the mean electric field, � is the collision frequency of the

plasma, and F� 0
�s� is any external force �for instance, a gravi-

tational force�. The mean density current vector J�� in Eq.
�14� includes these forcements and is defined by

J�� = J� + 	
s

qs

ms

1

2
F� �s�� . �15�

In addition, the mean velocity vector V�� s is defined by �15�

V�� s = V� s +
F� �s�

2�s
. �16�

In order to have the force vectors F� �s� in terms of the
subsidiary fields, we replace Eq. �15� into Eq. �14� to obtain

E�� = E� −
1

4
	0�J� + 	

s

qs

ms

1

2
F� �s�� , �17�

and we solve the set of equations, Eqs. �13� and �17�, with
the following result:

F� �0� =
�1 +

q1
2

8m1
2	0�1Z� �0�

1 +
1

8
	0� q0

2

m0
2�0 +

q1
2

m1
2�1 −

� q1q0

8m1m0
	0�0Z� �1�

1 +
1

8
	0� q0

2

m0
2�0 +

q1
2

m1
2�1 ,

�18a�

F� �1� =
�1 +

q0
2

8m0
2	0�0Z� �1�

1 +
1

8
	0� q0

2

m0
2�0 +

q1
2

m1
2�1 −

� q1q0

8m1m0
	0�1Z� �0�

1 +
1

8
	0� q0

2

m0
2�0 +

q1
2

m1
2�1 ,

�18b�

where the vectors Z� �s� are defined by

Z� �s� =
qs

ms
�s
E� −

1

4
	0J� + V� s � B��

− ��s�V� s − V� �s+1� mod 2� + F� 0
�s�. �19�

Next, we adopt BGK collision terms �ij
p�K� and �0

�K� of the
form �14�

�i
p�s� = −

1

�s
�f i

p�s��x�,t� − f i
p�s�eq�x�,t�� , �20a�

�ij
p�2� = −

1

�2
�Gij

p �x�,t� − Gij
peq�x�,t�� , �20b�

�0
�s� = −

1

�s
�f0

�s��x�,t� − f0
�s�eq�x�,t�� , �20c�

�0
�2� = −

1

�2
�G0�x�,t� − G0

eq�x�,t�� . �20d�

The equilibrium functions for the fluids f i
p�s�eq and f0

�s�eq

are

f i
p�s�eq�x�,t� = 
i�s�3�s�s

�−1 + 3�v� i
p · V�� s�

+
9

2
�v� i

p · V�� s�2 −
3

2
�V�� s

2� , �21a�

f0
p�s�eq�x�,t� = 3�s�1 −

1

2
�4�s�s

�−1 + V�� s
2� . �21b�

Hereby, �s is a constant that is fixed by the state equation for
the plasma as follows. We assume for the plasma a state
equation of the form

Ps = 
��s�0

�s
��

P�s�0, �22�

where � is the polytropic index and P�s�0 and ��s�0 are the
characteristic fluid pressure and density. For all purposes, the
pressure is computed from the density via this equation.
Then, the constant �s is defined as

�s = P�s�0��s�0
−� . �23�

For the electromagnetic field �K=2� we have

Gij
p eq�x�,t� =

1

4
E�� · e�ij

p +
1

8
B� · b� ij

p , �24a�

G0
eq�x�,t� = 0. �24b�

This completes the definition of the lattice Boltzmann.
The proof that this lattice Boltzmann model, via a

Chapman-Enskog expansion, recovers the equations of the
two-fluids theory for a plasma composed by electrons and
ions is shown in the Appendix . The model lets us consider
either compressible and nonviscous fluids or incompressible
and viscous fluids. The first ones are governed by the conti-
nuity equation

�� · ��sV� s�� +
��s

�t
= 0, �25�

the Navier-Stokes equation �up to second order in �

�s
 �V�� S

�t
+ �V�� · �� �V�� s� = − �� Ps +

qs

ms
�s�E� + V�� s � B� �

− ��s�V�� s − V�� �s+1� mod 2� + F� 0,

�26�

the state equation
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Ps = �s�s
� �27�

�with Ps the fluid pressure�, and the Maxwell equations. The
second ones are governed by the state equation �27�, the
Maxwell equations, the continuity equation

�� · V� s� = 0, �28�

and the Navier-Stokes equation for an incompressible and
viscous fluid �up to second order in �,

�s
 �V�� s

�t
+ �V�� · �� �V�� s� = − �� Ps +

qs

ms
�s�E� + V�� s � B� �

− ��s�V�� s − V�� �s+1� mod 2�

+ F� 0 + �s�s�
� 2V�� s, �29�

with kinematic viscosity �s= 1
3 ��s−1 /2�.

III. SIMULATION OF A 2D HARTMANN FLOW

In the MHD limit, the two-fluid theory becomes the MHD
�one fluid� theory, which is represented by the following
equations: the continuity of mass,

�� · ��V� � +
��

�t
= 0, �30�

the Navier-Stokes equation,

�
 �

�t
+ V� · �� �V� = − �� P + J� � B� + ��� 2V� + F� 0, �31�

the magnetic field equation,

�B�

�t
= �� � �V� � B� � + �m�� 2B� , �32�

and the state equation,

P = �s�
�, �33�

where � is the total mass density, V� is the total velocity field,
and �m= 1

	0�0
is the magnetic viscosity.

For the Hartmann flow �12,16,17�, we consider a fluid in
isotermal equilibrium ��=1� at low temperature �a small �s

value�, incompressible and viscous. The fluid moves in the x
direction between two walls at rest at y=−L and y=−L.
There is a constant magnetic field in the y direction, with
intensity B0, and a constant external force F=�g in the x
direction that drags the fluid �16�. So, the velocity and

magnetic fields take the forms V� = (Vx�y� ,0 ,0) and B�

= (Bx�y� ,B0 ,0), respectively. By replacing these expressions
in Eqs. �31� and �32�, one finds the following solutions for
the velocity and magnetic fields �16�:

Vx�y� =���m

�

gL

B0
cosh H
1 −

cosh�Hy/L�
cosh�H� � , �34a�

Bx�y� =
�gL

B0
� sinh�Hy/L�

sinh�H�
−

y

L
 , �34b�

where H=
B0L

����m
is the Hartmann number and −L�y�L.

For the simulation, we use a single row of 80 cells in the
y direction, with periodic boundary conditions in both x and
z directions. The initial conditions for the density functions
are obtained from the equilibrium expressions �21� and �24�
with the values V� s=0, �s=msns, E� =0, B� = �0,B0 ,0�, and

F� 0
�s�= ��sg ,0 ,0�. In addition, the constant values are �=1,

�s=3�10−6, 	0=1.0, �=100, �s=1.0, �2=0.5, m0=1.0
�10−19, m1=1820m0, and n0=n1=1.0�1023 particles per
unit volume. For the y direction, we assume as boundary
conditions at the walls that the equilibrium density functions
for the time evolution �Eqs. �21� and �24�� are always the

same from the initial conditions �including V� s=0, i.e., non-
conducting walls�. The system evolves until a steady state is
reached. We ran simulations for Hartmann numbers H=6.0,
13.0, and 26.0, and the magnetic field B0 was chosen to
obtain these Hartmann numbers.

Figure 5 shows the velocity profiles and Fig. 6 shows the
magnetic field profiles for the three cases. The solid lines are
the analytic solutions �Eq. �34��. The simulation results are in
excellent agreement with the analytical solutions. This result
shows that �at least for the MHD limit� our LB model works
properly.

IV. APPLICATION TO MAGNETIC RECONNECTION

A. Dynamics of the magnetic reconnection process

In order to simulate the magnetic reconnection in the
magnetotail, we chose the initial equilibrium condition pro-
posed by Harris �18,19� for the current sheet, plus a magnetic
dipole field, orthogonal to the sheet. For this simulation we
assume that the fluids are nonviscous and compressible.

FIG. 5. Velocity profile Vx vs y for different Hartmann numbers:
H=6.0 �diamonds�, H=13.0 �squares�, and H=26.0 �circles�. The
solid lines are the analytical results.
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The current sheet lies on the x-y plane, and its magnetic

field is described by the vector potential A� = �0,Ay ,0� with

Ay�x,z� = LB0 ln cosh�v�x��z/L��/v�x� , �35�

where the effective thickness of the current sheet is given by
L /v�x�, and the asymptotic strength, B0, is the value of Bx in
the limit z→�, divided by v�x�. The function v�x� is an
arbitrary slowly varying function. We choose for v�x� the
quasiparabolic function proposed by �20,21�

v�x� = exp�− x/L� , �36�

where the parameter  is much smaller than one and deter-
mines the strength of the z component of the magnetic field.
We took =0.1 for the simulation. The initial density is the
one proposed by Harris,

ns�x,z� = nb + ncv
2�x�cosh−2�v�x��z/L�� , �37�

where nb is the background density and nb+nc is the maxi-
mal density.

The magnetic dipole is set at position x0 with momentum
M and oriented in the z direction. It generates a magnetic
field given by

Bx�x,z� =
3M�x − x0�z

��x − x0�2 + z2�5/2 ,

By�x,z� = 0,

Bz�x,z� =
M�2z2 − �x − x0�2�
��x − x0�2 + z2�5/2 . �38�

The lattice constant �x is chosen as one seventh of the ion
inertial length, �x= 1

7c /
1, where 
1 is the ion plasma fre-

quency, 
1=� q1
2n1

0m1
, with n1=105 particles per cubic meter for

the magnetotail �22� and m1 the proton mass. That gives �x
�103 km. Since the current sheet in the magnetotail can be

assumed around 3000 km width �22,23�, we chose L
=2c /
1. For the position of the magnetic dipole, we took
x0=22.7c /
1 and for the dipole momentum, M =3�1012.
The grid is an array of 100�100 cells on the x-z plane with
periodic boundary conditions in the y direction and free
boundary conditions for the fields in the other directions
�each boundary cell copies the density functions of its first
neighbor in ortogonal direction to the boundary at each time
step�. Thus, the simulation region is a square of 14.26c /
1
length �around 10 300 km�. For this simulation we took m0
=m1 /100 �i.e., an electron mass 20 times larger than the real
one� in order to obtain numerical stability, but it has been
shown �24� that this point does not qualitatively change the
physical results. The temperature ratio is chosen to be
T0 /T1=0.2, according to observational results �25�. For this
simulation, we took nc=5nb and nb=0.17n1. Figures 7–10
show the evolution of the magnetic field lines in the mag-
netic reconnection process. This appears in a natural way,
without the a priori introduction of any resistive region. The
factor �1 is the ionic cyclotron frequency, �1=q1B0 /m1.
This result shows that the model can actually simulate the
magnetic reconnection. This simulation took 1 h in a Pen-
tium IV PC of 2.8 GHz, i.e., it is fast.

B. Reconnection rates

To compute real reconnection rates we performed a simi-
lar simulation to the one before, but with the actual ratio
between electronic and ionic masses �m1=1820m0�. This
choice makes us choose shorter time steps ��t=3.54
�10−5 s� and smaller cells ��x=15 km� in order to repro-
duce with accuracy the electron moves. The simulation re-
gion is of 1500 km in x and 1500 km in z. Since the region is
smaller than before, v�x�=1 is a good approximation on the

FIG. 6. Magnetic field intensity Bx vs y for different Hartmann
numbers: H=6.0 �diamonds�, H=13.0 �squares�, and H=26.0
�circles�. The solid lines are the analytical results.

FIG. 7. Magnetic field lines in the magnetic reconnection pro-
cess at t=0 �initial conditions�.

FIG. 8. Evolution for the magnetic field lines in the magnetic
reconnection process at t=3 /�1.
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entire region. The resolution of the grid was 100�100, but
the entire simulation was repeated with a second resolution
of 200�200, without finding any notorious differences. The
simulation constants are L=1500 km �22� and B0=10.0 nT
�23�. The electronic temperature is chosen as T0=5.8 MK
and the ionic one as T1=23.2 MK �25�. All these are obser-
vational data. The electronic mass is taken m0=9.11
�10−31 kg and the ionic mass is m1=1.67�10−27 kg. Be-
cause the initial equilibrium condition, proposed by Harris
�18,19� for the current sheet, is based on resistive MHD and
our simulation is based on two-fluids theory, we take a dif-
ferent initial condition, with initial densities in Eq. �37� as
nc=0 and nb=105 m−3. All other constants of our LB model
take their standard values in the International System of
Units units.

This initial configuration is not in equilibrium. For this
reason, our simulation has two parts. In the first one, we
impose the current sheet configuration, and fields and fluids
are allown to change according to the two-fluids theory until
reaching an equilibrium condition. In the second one, the
system starts from that equilibrium condition and evolves
without any imposition, i.e., this is the actual phenomenon
we want to study.

The first part of the simulation took 5000�t and the equi-
librium configuration we obtained for the magnetic field is
shown in Fig. 11. The same field after 2500 more steps, i.e.,
in the second part, is drawn in Fig. 12, showing a reconnec-
tion. To calculate the reconnection rate, we use the definition

R =
Vin

VA
, �39�

where Vin is the inflow velocity of the plasma to the diffusive
zone, and VA is the characteristic Alfvén velocity.

The Alfvén velocity is defined by

VA =
B�

�	0nb�m1 + m0�
, �40�

where B� is the magnetic field intensity.
Our model, in contrast with other ones, does not include

an explicit diffusive zone, but we can see the expected
asymptotic behavior of the inflow and Alfven velocities for a
reconnection region �Fig. 13�. The asymptotic limits, how-
ever, change if one takes a larger simulation space. Thus, we
have opted for defining a reconnection rate for each value of
the z coordinate across the current sheet by computing the
Alfvén velocity as a function of z and dividing the plasma
inflow velocity at each z by the Alfvén velocity there �Fig.
14�. By this way, we obtain reconnection rates for this central
region between 0.062 and 0.073, which are in good agree-
ment with the experimental observations of around R�0.1
�26�. The shape of the curve changes if one takes a smaller
simulation space, but the peaks lay more or less in the same
range. Nevertheless, this is not a numerical instability. In-
deed, if we run the same simulation with a finer grid �200
�200 cells of 7.5 km size�, we obtain the same curves as
before. This simulation with 100�100 cells of 15 km size
took just 6 hours in a Pentium IV PC of 32 bits at 3.0 GHz.

FIG. 9. Evolution for the magnetic field lines in the magnetic
reconnection process at t=15 /�1.

FIG. 10. Evolution for the magnetic field lines in the magnetic
reconnection process at t=20 /�1.

FIG. 11. Magnetic field lines in the magnetic reconnection pro-
cess at t=5000�t �equilibrium conditions�.

FIG. 12. Evolution for the magnetic field lines in the magnetic
reconnection process at t=7500�t.
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V. CONCLUSION

In this paper we introduce a 3D lattice Boltzmann for
plasmas, which is able to simulate magnetic reconnection
without any previous assumption of a resistive region or an
anomalous resistivity. The model simulates the plasma as
two fluids �one electronic and one ionic� with an interaction
term. It reproduces in the continuous limit the equations of
the two-fluids theory and, therefore, the MHD Hall equa-
tions. This model can simulate either conducting and viscous
fluids in the incompressible limit or nonviscous compressible
fluids, and successfully reproduces both the Hartmann flow
and the magnetic reconnection in the magnetotail. The local
reconnection rates we obtain for the magnetotail with this
model are between R=0.062 and R=0.073, which is in good
agreement with observations.

Since this method includes both electric and magnetic
fields, plus the density and velocity fields for each fluid, it
gives much more insight on the details of plasma physics.
Moreover, it opens the door to much more sophisticated
boundary conditions, such as conductive walls or electro-

magnetic waves in plasmas. This is an advantage upon other
magnetohydrodynamic LB models. Furthermore, it is 3D, so
many interest phenomena can be investigated here. The
model does not require large computational resorces. It just
takes between 6 h and 7 h in a Pentium IV PC of 3.0 GHz
and uses around 13 MB of RAM.

As other methods do, the stability of our model is related
with the electron to ion mass ratio. Systematic errors cumu-
late with time, and finally the model becomes unstable. The
stabilization time falls down with larger mass ratios. The
simulation for the magnetic reconnection rate in the magne-
totail we shown above is almost at the limit of good perfor-
mance, but it is remarkable that the model reaches enough
stability to see reliable results with the actual mass ratio of
mi /me=1820 that can be compared with experimental re-
sults. We also ran simulations with mass ratios of mi /me
=20 and mi /me=100, which were much more stable. Other
LB models for magnetohydrodynamics �6–13� and two fluids
�usual fluid dynamics, not plasmas� exhibit unstabilities
when they consider mass ratios larger than 10. In these mod-
els, the automaton velocity is similar to the speed of sound.
In contrast, the automaton velocity for our model is a little
bit larger than the speed of light �actually, it is �2c�, and the
time steps are, thus, much shorter. This is for us the most
reliable source of stability in our model.

By investigating the magnetic reconnection in the magne-
totail with our lattice Boltzmann model we found a very
interesting result. The range and the peak values of the local
reconnection rate we have defined by dividing the inflow
velocity at each z coordinate by the local Alfven velocity
there seems are less affected by the borders in the simulation
space than the asymptotic limits for those quantities. There-
fore, it seems to be a reliable quantity for the study of mag-
netic reconnection with models that do not include an ex-
plicit diffusive region.

The model introduces the forces at first order in time, but
it works properly for weak electromagnetic fields and low
resistive plasmas, including the magnetotail values. These
limits depend on the electron and ion mass ratio. When this
ratio is small, it is able to work with stronger electromagnetic
field and larger time steps, but this modifies the MHD Hall
equation; however, such small ratios have been widely used
in the simulation of magnetic reconnection processes, with-
out large precision loses �24�.

If the mass ratio is set to one, the model reproduces resis-
tive MHD. Small deviations from this unity ratio allows for a
tuning of the Hall terms in the generalized Ohm’s law. This
would allow one to simulate other phenomena, such as the
magnetic reconnection in the solar flares. Moreover, since
the model reproduces all terms of the generalized Ohm’s law,
even plasmas with significative strong oscillations of the
electric field could also be simulated, as it is the case of
many plasmas in the laboratory. Since it is a two-fluid model,
it may be possible to simulate such processes where ions and
electrons separate smoothly from each other, as in the iono-
sphere. In addition, because this model also reproduces the
Maxwell equations, it can also be used to reproduce the Far-
aday rotation of the polarization plain of electromagnetic
waves crossing astrophysical plasmas. It seems also possible
to develop models including forces at second order in time,

FIG. 13. Inflow velocity �circle� and Alfvén velocity �square� vs
z at t=2500�t and x=0.

FIG. 14. Reconnection rate vs z at t=2500�t and x=0. The
following curves were computed with �x=15 km: the dotted line is
for a simulation zone of 750�750 km, the dashed line is for a
simulation zone of 1125�1125 km, and the solid line is for a simu-
lation zone of 1500�1500 km. In addition, the dotted-dotted-
dashed line is obtained for the same simulation zone of the solid
line �1500�1500 km� with �x=7.5 km.
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or LB models with 13 velocity vectors for the fluids, as pro-
posed by �27�. All these are promisory paths of future work.

Summarizing, we have introduced a 3D lattice Boltzmann
model that reproduces the two-fluid theory for plasmas and
includes in a natural way many aspects of interest in plasma
physics, such as electric fields and magnetic reconnection. It
has been shown in this work that this model can actually be
used to investigate real astrophysical problems, but it seems
to be able to cover a much broader range of applications. We
hope that this LB model will contribute to the study of
plasma physics in many interesting phenomena.
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APPENDIX: CHAPMAN-ENSKOG EXPANSION

The Boltzmann equations for each fluid, Eqs. �8�–�11�,
determine the system evolution. This evolution rule gives in
the continuum limit the macroscopic differential equations
that the system satisfies. This is known as the Chapman-
Enskog expansion. To develop it, we start by taking the Tay-
lor expansion of these equations until second order in spatial
and temporal variables,

v� i
p · �� f i

p�s� +
1

2	
�,�

�2f i
p�s�

�x� � x�

�vi�
p vi�

p � +
� f i

p�s�

�t
+

�

�t
v� i

p · �� f i
p�s�

+
1

2

�2f i
p�s�

�t2 = −
1

�s
�f i

p�s� − f i
p�s�eq� + Ti

�s�, �A1�

v� i
p · �� Gij

p +
1

2	
�,�

�2Gij
p

�x� � x�

�vi�
p vi�

p � +
�Gij

p

�t
+

�

�t
v� i

p · �� Gij
p

+
1

2

�2Gij
p

�t2 �t2 = −
1

�2
�Gij

p − Gij
p eq� , �A2�

� f0
�s�

�t
+

1

2

�2f0
�s�

�t2 = −
1

�s
�f0

�s� − f0
�s�eq� + T0

�s�, �A3�

�G0

�t
+

1

2

�2G0

�t2 = −
1

�2
�G0 − G0

eq� . �A4�

where � ,�=x ,y ,z denotes the components in the x, y, and z
directions.

Next, we expand the distribution functions and the spatial
and time derivatives in a power series on a small parameter,
,

Gij
p = Gij

p�0� + Gij
p�1� + 2Gij

p�2� + ¯ , �A5�

f i
p�s� = f i

p�s��0� + f i
�s��1� + 2f i

p�s��2� + ¯ , �A6�

�

�t
= 

�

�t1
+ 2 �

�t2
+ ¯ , �A7�

�

�x�

= 
�

�x�1
+ ¯ . �A8�

It is assumed that only the zero order terms in  of the dis-
tribution functions contribute to the macroscopic variables.
So, for n�0 we have

f0
s�n� + 	

i,p
f i

p�s��n� = 0, �A9a�

	
i,p

f i
p�s��n�v� i

p = 0, �A9b�

	
i,j,p

Gij
p�n�e�ij

p = 0, �A9c�

	
i,j,p

Gij
p�n�b� ij

p = 0. �A9d�

The external forces F� �s� and the mean current density J��

are of order  �15�, so we can write F� �s�=F� 1
�s�, J�� =J�� 1,

Ti
�s�=T1i

�s�, and T0
�s�=T10

�s�. Because f i
p�s�eq and Gij

peq are now

functions of F� �s� and J�� , we need to develop a Chapman-
Enskog expansion of the equilibrium function, too,

f i
p�s�eq = f i

p�s��0�eq + f i
p�s��1�eq + 2f i

p�s��2�eq, �A10�

Gij
peq = Gij

p�0�eq + Gij
p�1�eq + 2Gij

p�2�eq. �A11�

Thus, by replacing these results into Eqs. �A1�–�A4�, we
obtain at zeroth order of 

f i
p�s��0�eq = f i

p�s��0�, �A12a�

f0
�s��0�eq = f0

�s��0�, �A12b�

Gij
p�0�eq = Gij

p�0�. �A12c�

G0
eq = G0

�0�. �A12d�

For the first-order terms in  of the distribution functions
we obtain

v� i
p · �� 1f i

p�s��0� +
� f i

p�s��0�

�t1
= −

1

�s
�f i

p�s��1� − f i
p�s��1�eq� + T1i

�s�,

�A13a�

v� i
p · �� 1Gij

p�0� +
�Gij

p�0�

�t1
= −

1

�2
�Gij

p�1� − Gij
p�1�eq� ,

�A13b�

� f0
�s��0�

�t1
= −

1

�s
�f0

�s��1� − f0
�s��1�eq� + T10

�s�, �A13c�
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�G0
�0�

�t1
= −

1

�2
�G0

�1� − G0
�1�eq� , �A13d�

and for the second-order terms in  we have
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�
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�t1
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1
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1
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1 −
1

2�s
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1

2�s
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1

2

�T10
�s�
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1

�s
�f0

�s��2� − f0
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�t2
+

1
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�G0
�1�eq

�t1
= −

1

�2
�G0

�2� − G0
�2�eq� .

�A14d�

The terms of order one and two for the equilibrium func-
tions of the fluids are obtained by replacing Eq. �16� into Eq.
�21�. That gives

f i
p�s�eq�x�,t� = 
i�s�3�s�s

�−1 + 3�v� i
p · 
V� s +

F� 1
�s�

2�s
�

+
9

2
�v� i

p · 
V� s +
F� 1

�s�

2�s
�2

−
3

2

V� s +

F� 1
�s�

2�s
�2� ,

�A15a�

f0
p�s�eq�x�,t� = 3�s�1 −

1

2
�4�s�s

�−1 + 
V� s +
F� 1

�s�

2�s
�2� .

�A15b�

From these equations we can obtain

f i
p�s��0�eq�x�,t� = 
i�s�3�s�s

�−1 + 3�v� i
p · V� s�

+
9

2
�v� i

p · V� s�2 −
3

2
�V� s�2 , �A16a�

f i
p�s��1�eq�x�,t� = 
i�3

2
�v� i

p · F� 1
�s�� +

9

2
�v� i

p · V� s��v� i
p · F� 1

�s��

− �3

2
�V� s · F� 1

�s�� , �A16b�

f i
p�s��2�eq�x�,t� =


i

�s
�9

4
�v� i

p · F� 1
�s��2�−

3

4
�F� 1

�s��2 ,

�A16c�

and

f0
p�s��0�eq�x�,t� = 3�s�1 −

1

2
�4�s�s

�−1 + �V� s�2�� ,

�A16d�

f0
p�s��1�eq�x�,t� = − 3�1

2
�V� s · F� 1

�s�� , �A16e�

f0
p�s��2�eq�x�,t� = −

3

�s

1

4
�F� 1

�s� · F� 1
�s��� , �A16f�

The same process can be used to determine the terms of
order 1 and 2 for the equilibrium functions of the electro-
magnetic fields. Replacing Eq. �14� into Eq. �24� and group-
ing, we have

Gij
p�0�eq�x�,t� =

1

4
E� · eij

p +
1

8
B� · bij

p , �A17a�

Gij
p�1�eq�x�,t� = −

	0

16
J�� 1 · eij

p , �A17b�

Gij
p�2�eq�x�,t� = 0. �A17c�

Now, we are ready to determine the equation that the
model satisfies in the continuum limit. First, let us consider
nonviscous compressible fluids, that is �s= 1

2 . By summing
up Eq. �A13a� over i and p, and by taking into account Eqs.
�A13c�, �7�, �A16�, and �A9�, we obtain

�� · ��sV� s� +
��s

�t1
= 0. �A18�

By summing up Eq. �A14a� in the same way, we obtain

�� · 
1

2
F� 1

�s�� +
��s

�t2
= 0. �A19�

Now, we can add these two equations to obtain

�� · 
�sV� s +
1

2
F� 1

�s�� +
��s

�t1
= 0. �A20�

Next, following Guo et al., �15�, and by taking into account
Eq. �16�, we arrive to the continuity equation

�� · ��sV� s�� +
��s

�t
= 0. �A21�

By multiplying Eq. �A13a� by v� i
p and summing up over i

and p, we obtain

�

�x�

��sVs�Vs�� +
���s�s

��
�x�

+
���sVs��

�t1
= F1�

�s� . �A22�

In a similar way, by multiplying Eq. �A14a� by v� i
p and sum-

ming up over i and p, we obtain
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���sVs��
�t2

+
1

2

�

�x�

�F1�
�s�Vs� + F1�

�s�Vs�� +
1

2

�F1�
�s�

�t1
= 0.

�A23�

Now, we can add these two equations and replace Eq. �16� to
obtain �up to second order in �

���sVs�� �
�t

+
�

�x�

��sVs�� Vs�� � = −
�Ps

�x�

+ F1�
�s� . �A24�

This is the Navier-Stokes equation for nonviscous compress-
ible fluids. In our model, the force F�

�s� is taken at first order

in . With this approximation, Eq. �13� gives F1�
�s��V� s�=F1�

�s�

��V�� s�, and the Navier-Stokes equation is

���sVs�� �
�t

+
�

�x�

��sVs�� Vs�� � = −
�Ps

�x�

+ 
 qs

ms
�s�E�� + V�� s � B� �

− ��s�V�� s − V�� �s+1� mod 2��
�

+ F0�. �A25�

By replacing Eq. �A21� into Eq. �A25�, we arrive at the usual
form of the Navier-Stokes equation for a nonviscous com-
pressible fluid �4�

�s
 �V�� s

�t
+ �V�� · �� �V�� s� = − �� Ps +

qs

ms
�s�E�� + V�� s � B� �

− ��s�V�� s − V�� �s+1� mod 2� + F� 0.

�A26�

Second, let us consider both fluids with viscosity ��s

�1 /2� in the incompressible limit. By following the same
procedure, we arrive to the following momentum equation
�up to second order in �:

���sVs�� �
�t

+
�

�x�

��sVs�� Vs�� � = −
�Ps

�x�

+ 
 qs

ms
�s�E�� + V�� s � B� �

− ��s�V�� s − V�� �s+1� mod 2��
�

+ �s�s�
� 2Vs�� + F0�, �A27�

where the kinematic viscosity is �s= 1
3 ��s−1 /2�. By follow-

ing the same procedure described above �4�, we obtain

�s
 �V�� s

�t
+ �V�� · �� �V�� s� = − �� Ps +

qs

ms
�s�E�� + V�� s � B� �

− ��s�V�� s − V�� �s+1� mod 2�

+ F� 0 + �s�s�
� 2V�� s. �A28�

The energy evolution equation is not necessary because it is
obtained by replacing Eq. �27� into Eq. �A21�, that is

�� · �
Ps

�s
�1/�

V� s� +
�

�t

Ps

�s
�1/�

= 0, �A29�

so that

Ps
1/�−1

��s
1/� V� s� · �Ps + 
Ps

�s
�1/�

�� · V� s� +
Ps

1/�−1

��s
1/�

�Ps

�t
= 0,

�A30�

that can be simplified to obtain

�Ps

�t
+ V� s� · �Ps + �Ps�

� · V� s� = 0. �A31�

For the electromagnetic field, we take �2=1 /2. By sum-
ming up Eqs. �A13b�, �A13d�, �A14b�, and �A14d� on i, j,
and p, we do not obtain any information about the fields.
Thus, let us multiply these equations by e�ij

p before summing
up. That gives

�E�

�t1
−

1

2
�� � B� = −

1

2
	0J�� 1, �A32�

and

�E�

�t2
−

	0

4

�J�� 1

�t1
= 0. �A33�

If we add these two equations, and because of Eq. �14�, we
obtain the first Maxwell equation,

�E��

�t
−

1

2
�� � B� = − 	0

1

2
J�� . �A34�

Similarly, multiplying Eqs. �A13b� and �A14b� by b� ij
p and

summing up on i, j, and p gives

�B�

�t1
+ �� � E� = 0 �A35�

and

�B�

�t2
−

1

2
�� � 
1

2
	0J�� 1� = 0. �A36�

If we add these two last equations, we obtain the second
Maxwell equation,

�B�

�t
+ �� � E�� = 0. �A37�

The other two Maxwell equations can be obtained from the
Eqs. �A34� and �A37� as follows �4�. If one applies the di-
vergence to these equations we obtain

���� · E�� �
�t

= −
1

2
	0�� · J�� , �A38�

���� · B� �
�t

= 0. �A39�

Now, let us replace Eq. �15� in Eq. �A38� to obtain
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���� · E�� �
�t

= −
1

2
	0
 q0

m0
�� · ��0V�� 0� +

q1

m1
�� · ��1V�� 1�� ,

�A40�

and because of the two fluids satisfy the continuity equations
�A21� we obtain

���� · E�� �
�t

=
1

2
	0
 q0

m0

��0

�t
+

q1

m1

��1

�t
� . �A41�

By taking into account Eq. �7�, we finally obtain

�
�� · E�� −
1

2
	0�c�

�t
= 0. �A42�

Thus, if the initial conditions for the electromagnetic fields
satisfy the Maxwell equations

�� · B� = 0. �A43�

�� · E�� =
1

2
	0�c =

�c

0
. �A44�

This equations will be recovered for all times.
Summarizing, the adiabatic state equation, Eq. �27�, and

Eqs. �A21� and �A25� determine the behavior of a nonvis-
cous compressible plasma. If we use Eq. �A27� instead of
Eq. �A25�, the model reproduces the behavior of an incom-
pressible plasma with viscosity. Equations �A34�, �A37�,
�A43�, and �A44�, that is, the maxwell equations, determine
the evolution of the electromagnetic fields. These are the
equations of the two-fluids theory �4� and this completes the
proof.
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